LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

Overview

LightningFSL: Few-Shot Learning with Pytorch-Lightning

LICENSE Python last commit

In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, including two official ones

Boosting Few-Shot Classification with View-Learnable Contrastive Learning (ICME 2021)

Rectifying the Shortcut Learning of Background for Few-Shot Learning (NeurIPS 2021)

Contents

  1. Advantages
  2. Few-shot classification Results
  3. General Guide

Advantages:

This repository is built on top of LightningCLI, which is very convenient to use after being familiar with this tool.

  1. Enabling multi-GPU training
    • Our implementation of FSL framework allows DistributedDataParallel (DDP) to be included in the training of Few-Shot Learning, which is not available before to the best of our knowledge. Previous researches use DataParallel (DP) instead, which is inefficient and requires more computation storages. We achieve this by modifying the DDP sampler of Pytorch, making it possible to sample few-shot learning tasks among devices. See dataset_and_process/samplers.py for details.
  2. High reimplemented accuracy
    • Our reimplementations of some FSL algorithms achieve strong performance. For example, our ResNet12 implementation of ProtoNet and Cosine Classifier achieves 76+ and 80+ accuracy on 5w5s task of miniImageNet, respectively. All results can be reimplemented using pre-defined configuration files in config/.
  3. Quick and convenient creation of new algorithms
    • Pytorch-lightning provides our codebase with a clean and modular structure. Built on top of LightningCLI, our codebase unifies necessary basic components of FSL, making it easy to implement a brand-new algorithm. An impletation of an algorithm usually only requires three short additional files, one specifying the lightningModule, one specifying the classifer head, and the last one specifying all configurations. For example, see the code of ProtoNet (modules/PN.py, architectures/classifier/proto_head.py) and cosine classifier (modules/cosine_classifier.py, architectures/classifier/CC_head.py.
  4. Easy reproducability
    • Every time of running results in a full copy of yaml configuration file in the logging directory, enabling exact reproducability (by using the direct yaml file instead of creating a new one).
  5. Enabling both episodic/non-episodic algorithms
    • Switching with a single parameter is_meta in the configuration file.

Implemented Few-shot classification Results

Implemented results on few-shot classification datasets. The average results of 2,000 randomly sampled episodes repeated 5 times for 1/5-shot evaluation with 95% confidence interval are reported.

miniImageNet Dataset

Models Backbone 5-way 1-shot 5-way 5-shot pretrained models
Protypical Networks ResNet12 61.19+-0.40 76.50+-0.45 link
Cosine Classifier ResNet12 63.89+-0.44 80.94+-0.05 link
Meta-Baseline ResNet12 62.65+-0.65 79.10+-0.29 link
S2M2 WRN-28-10 58.85+-0.20 81.83+-0.15 link
S2M2+Logistic_Regression WRN-28-10 62.36+-0.42 82.01+-0.24
MoCo-v2(unsupervised) ResNet12 52.03+-0.33 72.94+-0.29 link
Exemplar-v2 ResNet12 59.02+-0.24 77.23+-0.16 link
PN+CL ResNet12 63.44+-0.44 79.42+-0.06 link
COSOC ResNet12 69.28+0.49 85.16+-0.42 link

General Guide

To understand the code correctly, it is highly recommended to first quickly go through the pytorch-lightning documentation, especially LightningCLI. It won't be a long journey since pytorch-lightning is built on the top of pytorch.

Installation

Just run the command:

pip install -r requirements.txt

running an implemented few-shot model

  1. Downloading Datasets:
  2. Training (Except for Meta-baseline and COSOC):
    • Choose the corresponding configuration file in 'config'(e.g.set_config_PN.py for PN model), set inside the parameter 'is_test' to False, set GPU ids (multi-GPU or not), dataset directory, logging dir as well as other parameters you would like to change.
    • modify the first line in run.sh (e.g., python config/set_config_PN.py).
    • To begin the running, run the command bash run.sh
  3. Training Meta-baseline:
    • This is a two-stage algorithm, with the first stage being CEloss-pretraining, followed by ProtoNet finetuning. So a two-stage training is need. The first training uses the configuration file config/set_config_meta_baseline_pretrain.py. The second uses config/set_config_meta_baseline_finetune.py, with pre-training model path from the first stage, specified by the parameterpre_trained_path in the configuration file.
  4. Training COSOC:
    • For pre-training Exemplar, choose configuration file config/set_config_MoCo.py and set parameter is_exampler to True.
    • For runing COS algorithm, run the command python COS.py --save_dir [save_dir] --pretrained_Exemplar_path [model_path] --dataset_path [data_path]. [save_dir] specifies the saving directory of all foreground objects, [model_path] and [data_path] specify the pathes of pre-trained model and datasets, respectively.
    • For runing a FSL algorithm with COS, choose configuration file config/set_config_COSOC.py and set parameter data["train_dataset_params"] to the directory of saved data of COS algorithm, pre_trained_path to the directory of pre-trained Exemplar.
  5. Testing:
    • Choose the same configuration file as training, set parameter is_test to True, pre_trained_path to the directory of checkpoint model (with suffix '.ckpt'), and other parameters (e.g. shot, batchsize) as you disire.
    • modify the first line in run.sh (e.g., python config/set_config_PN.py).
    • To begin the testing, run the command bash run.sh

Creating a new few-shot algorithm

It is quite simple to implement your own algorithm. most of algorithms only need creation of a new LightningModule and a classifier head. We give a breif description of the code structure here.

run.py

It is usually not needed to modify this file. The file run.py wraps the whole training and testing procedure of a FSL algorithm, for which all configurations are specified by an individual yaml file contained in the /config folder; see config/set_config_PN.py for example. The file run.py contains a python class Few_Shot_CLI, inherited from LightningCLI. It adds new hyperpameters (Also specified in configuration file) as well as testing process for FSL.

FewShotModule

Need modification. The folder modules contains LightningModules for FSL models, specifying model components, optimizers, logging metrics and train/val/test processes. Notably, modules/base_module.py contains the template module for all FSL models. All other modules inherit the base module; see modules/PN.py and modules/cosine_classifier.py for how episodic/non-episodic models inherit from the base module.

architectures

Need modification. We divide general FSL architectures into feature extractor and classification head, specified respectively in architectures/feature_extractor and architectures/classifier. These are just common nn modules in pytorch, which shall be embedded in LightningModule mentioned above. The recommended feature extractor is ResNet12, which is popular and shows promising performance. The classification head, however, varies with algorithms and need specific designs.

Datasets and DataModule

It is usually not needed for modification. Pytorch-lightning unifies data processing across training, val and testing into a single LightningDataModule. We disign such a datamodule in dataset_and_process/datamodules/few_shot_datamodule.py for FSL, enabling episodic/non-episodic sampling and DDP for multi-GPU fast training. The definition of Dataset itself is in dataset_and_process/datasets, specified as common pytorch datasets class. There is no need to modify the dataset module unless new datasets are involved.

Callbacks and Plugins

It is usually not needed for modification. See documentation of pytorch-lightning for detailed introductions of callbacks and Plugins. They are additional functionalities added to the system in a modular fashion.

Configuration

Need modification. See LightningCLI for how a yaml configuration file works. For each algorithm, there needs one specific configuration file, though most of the configurations are the same across algorithms. Thus it is convenient to copy one configuration and change it for a new algorithm.

Owner
Xu Luo
M.S. student of SMILE Lab, UESTC
Xu Luo
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022