Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

Related tags

Deep Learningsew
Overview

SEW (Squeezed and Efficient Wav2vec)

made-with-python License: MIT

The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition" by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q Weinberger, and Yoav Artzi.

Model Checkpoints

Unsupervisedly Pre-trained on LibriSpeech 960h

Model Pre-training updates Dataset Model
W2V2-tiny 100K Librispeech 960h download
W2V2-small 100K Librispeech 960h download
W2V2-mid 100K Librispeech 960h download
W2V2-base 100K Librispeech 960h download
SEW-tiny 100K Librispeech 960h download
SEW-small 100K Librispeech 960h download
SEW-mid 100K Librispeech 960h download
SEW-D-tiny 100K Librispeech 960h download
SEW-D-small 100K Librispeech 960h download
SEW-D-mid 100K Librispeech 960h download
SEW-D-mid (k127) 100K Librispeech 960h download
SEW-D-base 100K Librispeech 960h download
SEW-D-base+ 100K Librispeech 960h download
SEW-D-mid 400K Librispeech 960h download
SEW-D-mid (k127) 400K Librispeech 960h download
SEW-D-base+ 400K Librispeech 960h download

Usage

Dependencies

The code is tested with fairseq commit 05255f9, deberta commit bf17ca4 and the following packages.

torch==1.8.0
torchaudio==0.8.0
tqdm==4.49.0
Hydra==2.5
hydra-core==1.0.4
fvcore==0.1.5.post20210330
omegaconf==2.0.5
einops==0.3.0
fire==0.2.1

Apex

Please install NVIDIA's apex with

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./

wav2letter decoder

Currently, we are decoding with wav2letter v0.2 python binding at commit 96f5f9d Please install the python binding here https://github.com/flashlight/wav2letter/tree/96f5f9d3b41e01af0a031ee0d2604acd9ef3b1b0/bindings/python The newest commit d5a93f0 in v0.2 branch leads to worse WER for wav2vec 2.0 baselines.

Installation

git clone https://github.com/asappresearch/sew.git
cd sew 
pip install -e .

Pre-training

Pre-training SEW models

Run the following command where $model_size can be tiny, small, or mid, and $ngpu is tne number of GPUs you want to use.

bash scripts/pt-sew.sh $model_size $ngpu

Pre-training SEW-D models

bash scripts/pt-sew-d.sh $model_size $ngpu

where $model_size can be tiny, small, mid, mid-k127, base, or base+.

Fine-tuning

Run the following script to fine-tune a model with the hyperparameters from wav2vec 2.0.

bash scripts/ft-model.sh $pre_trained_model $split $ngpu

where $pre_trained_model can be either a W2V2, SEW, or a SEW-D model checkpoint and $split can be 10m, 1h, 10h, or 100h.

Here we also provide a set of hyperparameters which sets all dropouts the same as the pre-training stage, and we found it to be more stable.

bash scripts/ft-model-stable.sh $pre_trained_model $split $ngpu

If you see out of GPU memory error, please scale down the dataset.max_tokens and scale up the optimization.update_freq in scripts/ft-model.sh. For example modifying these lines

  dataset.max_tokens=3200000 \
  optimization.update_freq="[$((8 / $ngpu))]" \

to

  dataset.max_tokens=1600000 \
  optimization.update_freq="[$((16 / $ngpu))]" \

which reduces the batch size and increases the gradient accumulation steps in order to use less GPU memory.

Evaluation

  1. Please run this script to prepare the official LibriSpeech 4-gram language model.
bash scripts/prepare_librispeech_lm.sh $kenlm_build_bin

where $kenlm_build_bin is the folder that contains the KenLM build_binary executable file (e.g. /home/user/kenlm/build/bin).

  1. Then run this script to evaluate a pre-trained ASR model
python tools/eval_w2v.py tunelm --subsets '["dev-clean", "dev-other", "test-clean", "test-other"]' --model $asr_checkpoint
You might also like...
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Code for our CVPR 2021 paper
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

Comments
  • 8000 sample rate audio

    8000 sample rate audio

    Hello there,

    I'm trying to train on 8000 Hz sample rate audio dataset. Is it enough to simply add task.sample_rate=8000 to the fairseq command or there are additional config changes that I should make?

    I would much appreciate any advice

    Thank you

    opened by Mega4alik 0
  • How to train using not English Languages

    How to train using not English Languages

    Hi! Thank you for the awesome model!

    We are very interested in your project and we try to use the sew for Japanese Language. When we train the model, should we use these scripts? Thanks! https://github.com/asappresearch/sew/tree/master/scripts

    opened by jigenji 1
  • :bug: Fix padding mask calculation

    :bug: Fix padding mask calculation

    This PR updates the padding mask calculation to be the same as the one in the reference Wav2Vec2 implementation (same commit as listed in SEW's README): https://github.com/pytorch/fairseq/blob/05255f96410e5b1eaf3bf59b767d5b4b7e2c3a35/fairseq/models/wav2vec/wav2vec2.py#L477

    For more details on how and why it was fixed in fairseq, check out this PR by @patrickvonplaten https://github.com/pytorch/fairseq/pull/3228

    opened by anton-l 0
Releases(v0.0.1)
Owner
ASAPP Research
AI for Enterprise
ASAPP Research
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022