TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Overview

Simulated+Unsupervised (S+U) Learning in TensorFlow

TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial Training.

model

Requirements

Usage

To generate synthetic dataset:

  1. Run UnityEyes with changing resolution to 640x480 and Camera parameters to [0, 0, 20, 40].
  2. Move generated images and json files into data/gaze/UnityEyes.

The data directory should looks like:

data
├── gaze
│   ├── MPIIGaze
│   │   └── Data
│   │       └── Normalized
│   │           ├── p00
│   │           ├── p01
│   │           └── ...
│   └── UnityEyes # contains images of UnityEyes
│       ├── 1.jpg
│       ├── 1.json
│       ├── 2.jpg
│       ├── 2.json
│       └── ...
├── __init__.py
├── gaze_data.py
├── hand_data.py
└── utils.py

To train a model (samples will be generated in samples directory):

$ python main.py
$ tensorboard --logdir=logs --host=0.0.0.0

To refine all synthetic images with a pretrained model:

$ python main.py --is_train=False --synthetic_image_dir="./data/gaze/UnityEyes/"

Training results

Differences with the paper

  • Used Adam and Stochatstic Gradient Descent optimizer.
  • Only used 83K (14% of 1.2M used by the paper) synthetic images from UnityEyes.
  • Manually choose hyperparameters for B and lambda because those are not specified in the paper.

Experiments #1

For these synthetic images,

UnityEyes_sample

Result of lambda=1.0 with optimizer=sgd after 8,000 steps.

$ python main.py --reg_scale=1.0 --optimizer=sgd

Refined_sample_with_lambd=1.0

Result of lambda=0.5 with optimizer=sgd after 8,000 steps.

$ python main.py --reg_scale=0.5 --optimizer=sgd

Refined_sample_with_lambd=1.0

Training loss of discriminator and refiner when lambda is 1.0 (green) and 0.5 (yellow).

loss

Experiments #2

For these synthetic images,

UnityEyes_sample

Result of lambda=1.0 with optimizer=adam after 4,000 steps.

$ python main.py --reg_scale=1.0 --optimizer=adam

Refined_sample_with_lambd=1.0

Result of lambda=0.5 with optimizer=adam after 4,000 steps.

$ python main.py --reg_scale=0.5 --optimizer=adam

Refined_sample_with_lambd=0.5

Result of lambda=0.1 with optimizer=adam after 4,000 steps.

$ python main.py --reg_scale=0.1 --optimizer=adam

Refined_sample_with_lambd=0.1

Training loss of discriminator and refiner when lambda is 1.0 (blue), 0.5 (purple) and 0.1 (green).

loss

Author

Taehoon Kim / @carpedm20

Owner
Taehoon Kim
ex OpenAI
Taehoon Kim
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022