Python Library for Signal/Image Data Analysis with Transport Methods

Overview

PyTransKit

Python Transport Based Signal Processing Toolkit

Website and documentation: https://pytranskit.readthedocs.io/

Installation

The library could be installed through pip

pip install pytranskit

Alternately, you could clone/download the repository and add the pytranskit directory to your Python path

import sys
sys.path.append('path/to/pytranskit')

from pytranskit.optrans.continuous.cdt import CDT

Low Level Functions

CDT, SCDT

R-CDT

CLOT

  • Continuous Linear Optimal Transport Transform (CLOT) tutorial [notebook] [nbviewer]

Classification Examples

  • CDT Nearest Subspace (CDT-NS) classifier for 1D data [notebook] [nbviewer]
  • SCDT Nearest Subspace (SCDT-NS) classifier for 1D data [8] [notebook] [nbviewer]
  • Radon-CDT Nearest Subspace (RCDT-NS) classifier for 2D data [4] [notebook] [nbviewer]
  • 3D Radon-CDT Nearest Subspace (3D-RCDT-NS) classifier for 3D data [notebook] [nbviewer]

Estimation Examples

Transport-based Morphometry

  • Transport-based Morphometry to detect and visualize cell phenotype differences [7] [notebook] [nbviewer]

References

  1. The cumulative distribution transform and linear pattern classification, Applied and Computational Harmonic Analysis, November 2018
  2. The Radon Cumulative Distribution Transform and Its Application to Image Classification, IEEE Transactions on Image Processing, December 2015
  3. A continuous linear optimal transport approach for pattern analysis in image datasets, Pattern Recognition, March 2016
  4. Radon cumulative distribution transform subspace modeling for image classification, Journal of Mathematical Imaging and Vision, 2021
  5. Parametric Signal Estimation Using the Cumulative Distribution Transform, IEEE Transactions on Signal Processing, May 2020
  6. The Signed Cumulative Distribution Transform for 1-D Signal Analysis and Classification, ArXiv 2021
  7. Detecting and visualizing cell phenotype differences from microscopy images using transport-based morphometry, PNAS 2014
  8. Nearest Subspace Search in the Signed Cumulative Distribution Transform Space for 1D Signal Classification, ArXiv 2021

Resources

External website http://imagedatascience.com/transport/

You might also like...
 Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

Comments
  • Problem installing `bluepy` from the repo.

    Problem installing `bluepy` from the repo.

    Problem: for my machine (machine spec mentioned below), installing requirements on this repo, as given in requirements.txt throws the following error.

    error: legacy-install-failure
    
    × Encountered error while trying to install package.
    ╰─> bluepy
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for output from the failure.
    

    This error is in context with mention of bluepy in requirements.txt.

    Machine Specs:

    1. miniconda venv for python 3.9.12 running on MacOS Monterey; CPU: Apple M2.
    2. miniconda venv for python 3.10.4 running on Ubuntu Jammy Jellyfish; CPU: AMD Ryzen.

    Interesting Note: I don't find bluepy being directly imported in the code on the master or the CDT-app-gui branch.

    Proposed Solution:

    1. Remove bluepy from requirements.txt

    Note: This is not a problem with installing PyTranskit itself. It installs pretty gracefully through pip.

    opened by Ujjawal-K-Panchal 1
  • Changed filter to filter_name

    Changed filter to filter_name

    In the radoncdt.py file passing the option filter was not working since scikit-image expects the key filter_name.

    Tutorial 2 was failing for this reason.

    opened by giovastabile 0
  • Create a

    Create a "NS" classifier

    Create a "NS" classifier, as an standalone implementation of the nearest subspace classification method. The "RCDT_NS" and "CDT-NS" classifier can be a subclass of this classifier.

    opened by xuwangyin 0
  • Issue when setting forward('rm_edge = True')

    Issue when setting forward('rm_edge = True')

    This possibly just needs an edit to reduce the size of the reference signal array alongside the reduction in size of the signal with removed edges.

    File "\RCDT_Basic_Tests.py", line 115, in <module>
        Irev = rcdt.inverse(Ihat, temp, nlims)
    
      File "\pytranskit\optrans\continuous\radoncdt.py", line 123, in inverse
        return self.apply_inverse_map(transport_map, sig0, x1_range)
    
      File "\pytranskit\optrans\continuous\radoncdt.py", line 235, in apply_inverse_map
        sig1_recon = match_shape2d(sig0, sig1_recon)
    
      File "\pytranskit\optrans\utils\data_utils.py", line 81, in match_shape2d
        raise ValueError("A is bigger than B: "
    
    ValueError: A is bigger than B: (250, 250) vs (248, 248)
    
    opened by TobiasLong 0
Releases(0.1)
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Contextual Attention Network: Transformer Meets U-Net

Contextual Attention Network: Transformer Meets U-Net Contexual attention network for medical image segmentation with state of the art results on skin

Reza Azad 67 Nov 28, 2022
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022