GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

Related tags

Deep Learninggyrospd
Overview

GyroSPD

Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021.

Requirements

  • Python == 3.7
  • Pytorch == 1.5.1: conda install pytorch==1.5.1 torchvision==0.6.1 [cpuonly | cudatoolkit=10.2] -c pytorch.
  • Geoopt == 0.3.1: install from repository is advised
  • tensorboardx
  • tqdm

Running experiments

0. Init repo

sh init.sh

It will uncompress the Knowledge graphs and create the necessary folders. Datasets are taken from https://github.com/villmow/datasets_knowledge_embedding

1. Preprocess Dataset

python preprocess.py

This will preprocess all folders inside the data folder. It looks for "train", "valid", "test" files in tsv format with triples of "head relation tail"

2. Run Experiments

python -m torch.distributed.launch --nproc_per_node=N_CPUS --master_port=2055 train.py \\
            --n_procs=N_CPUS \\
            --data=PREP \\
            --run_id=RUN_ID \\
            --results_file=out/results.csv \\
            --model=MODEL \\
            --metric=riem \\
            --dims=10 \\
            --learning_rate=1e-4 \\
            --val_every=25 \\
            --patience=50 \\
            --batch_size=2048 \\
            --epochs=1000 \\
            --train_bias

Experiments can be run distributed over multiple CPUs/GPUs with N_CPUS. PREP must be the name of the folder inside data. Results will be reported in results_file with run_id as the name. For model and metric see Models and Metrics

Models and Metrics

The parameter --model can be set with:

  • tgspd: Applies a scaling on the head embedding
  • tgrotspd: Applies a rotation on the head embedding
  • tgrefspd: Applies a reflection on the head embedding
  • tgattnspd: Combines rotation and reflection with an attention mechanism

The parameter --metric can be set with:

  • riem: Riemannian metric
  • fone: Finsler One
  • finf: Finsler Infinity

TODO

  • Migrate to latest pytorch
  • Remove geoopt dependency / Migrate to latest geoopt

Citation

The source code and data in this repository aims at facilitating the study of graph embeddings in the space of symmetric positive definite matrices. If you use the code/data, please cite it as follows:

TBD
Owner
Federico Lopez
PhD Student on NLP at HITS
Federico Lopez
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022