Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Related tags

Deep LearningFISH
Overview

Fisher Induced Sparse uncHanging (FISH) Mask

This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neural Networks with Fixed Sparse Masks" by Yi-Lin Sung, Varun Nair, and Colin Raffel. To appear in Neural Information Processing Systems (NeurIPS) 2021.

Abstract: During typical gradient-based training of deep neural networks, all of the model's parameters are updated at each iteration. Recent work has shown that it is possible to update only a small subset of the model's parameters during training, which can alleviate storage and communication requirements. In this paper, we show that it is possible to induce a fixed sparse mask on the model’s parameters that selects a subset to update over many iterations. Our method constructs the mask out of the parameters with the largest Fisher information as a simple approximation as to which parameters are most important for the task at hand. In experiments on parameter-efficient transfer learning and distributed training, we show that our approach matches or exceeds the performance of other methods for training with sparse updates while being more efficient in terms of memory usage and communication costs.

Setup

pip install transformers/.
pip install datasets torch==1.8.0 tqdm torchvision==0.9.0

FISH Mask: GLUE Experiments

Parameter-Efficient Transfer Learning

To run the FISH Mask on a GLUE dataset, code can be run with the following format:

$ bash transformers/examples/text-classification/scripts/run_sparse_updates.sh <dataset-name> <seed> <top_k_percentage> <num_samples_for_fisher>

An example command used to generate Table 1 in the paper is as follows, where all GLUE tasks are provided at a seed of 0 and a FISH mask sparsity of 0.5%.

$ bash transformers/examples/text-classification/scripts/run_sparse_updates.sh "qqp mnli rte cola stsb sst2 mrpc qnli" 0 0.005 1024

Distributed Training

To use the FISH mask on the GLUE tasks in a distributed setting, one can use the following command.

$ bash transformers/examples/text-classification/scripts/distributed_training.sh <dataset-name> <seed> <num_workers> <training_epochs> <gpu_id>

Note the <dataset-name> here can only contain one task, so an example command could be

$ bash transformers/examples/text-classification/scripts/distributed_training.sh "mnli" 0 2 3.5 0

FISH Mask: CIFAR10 Experiments

To run the FISH mask on CIFAR10, code can be run with the following format:

Distributed Training

$ bash cifar10-fast/scripts/distributed_training_fish.sh <num_samples_for_fisher> <top_k_percentage> <training_epochs> <worker_updates> <learning_rate> <num_workers>

For example, in the paper, we compute the FISH mask of the 0.5% sparsity level by 256 samples and distribute the job to 2 workers for a total of 50 epochs training. Then the command would be

$ bash cifar10-fast/scripts/distributed_training_fish.sh 256 0.005 50 2 0.4 2

Efficient Checkpointing

$ bash cifar10-fast/scripts/small_checkpoints_fish.sh <num_samples_for_fisher> <top_k_percentage> <training_epochs> <learning_rate> <fix_mask>

The hyperparameters are almost the same as distributed training. However, the <fix_mask> is to indicate to fix the mask or not, and a valid input is either 0 or 1 (1 means to fix the mask).

Replicating Results

Replicating each of the tables and figures present in the original paper can be done by running the following:

# Table 1 - Parameter Efficient Fine-Tuning on GLUE

$ bash transformers/examples/text-classification/scripts/run_table_1.sh
# Figure 2 - Mask Sparsity Ablation and Sample Ablation

$ bash transformers/examples/text-classification/scripts/run_figure_2.sh
# Table 2 - Distributed Training on GLUE

$ bash transformers/examples/text-classification/scripts/run_table_2.sh
# Table 3 - Distributed Training on CIFAR10

$ bash cifar10-fast/scripts/distributed_training.sh

# Table 4 - Efficient Checkpointing

$ bash cifar10-fast/scripts/small_checkpoints.sh

Notes

  • For reproduction of Diff Pruning results from Table 1, see code here.

Acknowledgements

We thank Yoon Kim, Michael Matena, and Demi Guo for helpful discussions.

Owner
Varun Nair
Hi! I'm a student at Duke University studying CS. I'm interested in researching AI/ML and its applications in medicine, transportation, & education.
Varun Nair
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022