Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Related tags

Deep LearningFISH
Overview

Fisher Induced Sparse uncHanging (FISH) Mask

This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neural Networks with Fixed Sparse Masks" by Yi-Lin Sung, Varun Nair, and Colin Raffel. To appear in Neural Information Processing Systems (NeurIPS) 2021.

Abstract: During typical gradient-based training of deep neural networks, all of the model's parameters are updated at each iteration. Recent work has shown that it is possible to update only a small subset of the model's parameters during training, which can alleviate storage and communication requirements. In this paper, we show that it is possible to induce a fixed sparse mask on the model’s parameters that selects a subset to update over many iterations. Our method constructs the mask out of the parameters with the largest Fisher information as a simple approximation as to which parameters are most important for the task at hand. In experiments on parameter-efficient transfer learning and distributed training, we show that our approach matches or exceeds the performance of other methods for training with sparse updates while being more efficient in terms of memory usage and communication costs.

Setup

pip install transformers/.
pip install datasets torch==1.8.0 tqdm torchvision==0.9.0

FISH Mask: GLUE Experiments

Parameter-Efficient Transfer Learning

To run the FISH Mask on a GLUE dataset, code can be run with the following format:

$ bash transformers/examples/text-classification/scripts/run_sparse_updates.sh <dataset-name> <seed> <top_k_percentage> <num_samples_for_fisher>

An example command used to generate Table 1 in the paper is as follows, where all GLUE tasks are provided at a seed of 0 and a FISH mask sparsity of 0.5%.

$ bash transformers/examples/text-classification/scripts/run_sparse_updates.sh "qqp mnli rte cola stsb sst2 mrpc qnli" 0 0.005 1024

Distributed Training

To use the FISH mask on the GLUE tasks in a distributed setting, one can use the following command.

$ bash transformers/examples/text-classification/scripts/distributed_training.sh <dataset-name> <seed> <num_workers> <training_epochs> <gpu_id>

Note the <dataset-name> here can only contain one task, so an example command could be

$ bash transformers/examples/text-classification/scripts/distributed_training.sh "mnli" 0 2 3.5 0

FISH Mask: CIFAR10 Experiments

To run the FISH mask on CIFAR10, code can be run with the following format:

Distributed Training

$ bash cifar10-fast/scripts/distributed_training_fish.sh <num_samples_for_fisher> <top_k_percentage> <training_epochs> <worker_updates> <learning_rate> <num_workers>

For example, in the paper, we compute the FISH mask of the 0.5% sparsity level by 256 samples and distribute the job to 2 workers for a total of 50 epochs training. Then the command would be

$ bash cifar10-fast/scripts/distributed_training_fish.sh 256 0.005 50 2 0.4 2

Efficient Checkpointing

$ bash cifar10-fast/scripts/small_checkpoints_fish.sh <num_samples_for_fisher> <top_k_percentage> <training_epochs> <learning_rate> <fix_mask>

The hyperparameters are almost the same as distributed training. However, the <fix_mask> is to indicate to fix the mask or not, and a valid input is either 0 or 1 (1 means to fix the mask).

Replicating Results

Replicating each of the tables and figures present in the original paper can be done by running the following:

# Table 1 - Parameter Efficient Fine-Tuning on GLUE

$ bash transformers/examples/text-classification/scripts/run_table_1.sh
# Figure 2 - Mask Sparsity Ablation and Sample Ablation

$ bash transformers/examples/text-classification/scripts/run_figure_2.sh
# Table 2 - Distributed Training on GLUE

$ bash transformers/examples/text-classification/scripts/run_table_2.sh
# Table 3 - Distributed Training on CIFAR10

$ bash cifar10-fast/scripts/distributed_training.sh

# Table 4 - Efficient Checkpointing

$ bash cifar10-fast/scripts/small_checkpoints.sh

Notes

  • For reproduction of Diff Pruning results from Table 1, see code here.

Acknowledgements

We thank Yoon Kim, Michael Matena, and Demi Guo for helpful discussions.

Owner
Varun Nair
Hi! I'm a student at Duke University studying CS. I'm interested in researching AI/ML and its applications in medicine, transportation, & education.
Varun Nair
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

Vivek Kumar Singh 11 Sep 25, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022