Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Related tags

Deep LearningFISH
Overview

Fisher Induced Sparse uncHanging (FISH) Mask

This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neural Networks with Fixed Sparse Masks" by Yi-Lin Sung, Varun Nair, and Colin Raffel. To appear in Neural Information Processing Systems (NeurIPS) 2021.

Abstract: During typical gradient-based training of deep neural networks, all of the model's parameters are updated at each iteration. Recent work has shown that it is possible to update only a small subset of the model's parameters during training, which can alleviate storage and communication requirements. In this paper, we show that it is possible to induce a fixed sparse mask on the model’s parameters that selects a subset to update over many iterations. Our method constructs the mask out of the parameters with the largest Fisher information as a simple approximation as to which parameters are most important for the task at hand. In experiments on parameter-efficient transfer learning and distributed training, we show that our approach matches or exceeds the performance of other methods for training with sparse updates while being more efficient in terms of memory usage and communication costs.

Setup

pip install transformers/.
pip install datasets torch==1.8.0 tqdm torchvision==0.9.0

FISH Mask: GLUE Experiments

Parameter-Efficient Transfer Learning

To run the FISH Mask on a GLUE dataset, code can be run with the following format:

$ bash transformers/examples/text-classification/scripts/run_sparse_updates.sh <dataset-name> <seed> <top_k_percentage> <num_samples_for_fisher>

An example command used to generate Table 1 in the paper is as follows, where all GLUE tasks are provided at a seed of 0 and a FISH mask sparsity of 0.5%.

$ bash transformers/examples/text-classification/scripts/run_sparse_updates.sh "qqp mnli rte cola stsb sst2 mrpc qnli" 0 0.005 1024

Distributed Training

To use the FISH mask on the GLUE tasks in a distributed setting, one can use the following command.

$ bash transformers/examples/text-classification/scripts/distributed_training.sh <dataset-name> <seed> <num_workers> <training_epochs> <gpu_id>

Note the <dataset-name> here can only contain one task, so an example command could be

$ bash transformers/examples/text-classification/scripts/distributed_training.sh "mnli" 0 2 3.5 0

FISH Mask: CIFAR10 Experiments

To run the FISH mask on CIFAR10, code can be run with the following format:

Distributed Training

$ bash cifar10-fast/scripts/distributed_training_fish.sh <num_samples_for_fisher> <top_k_percentage> <training_epochs> <worker_updates> <learning_rate> <num_workers>

For example, in the paper, we compute the FISH mask of the 0.5% sparsity level by 256 samples and distribute the job to 2 workers for a total of 50 epochs training. Then the command would be

$ bash cifar10-fast/scripts/distributed_training_fish.sh 256 0.005 50 2 0.4 2

Efficient Checkpointing

$ bash cifar10-fast/scripts/small_checkpoints_fish.sh <num_samples_for_fisher> <top_k_percentage> <training_epochs> <learning_rate> <fix_mask>

The hyperparameters are almost the same as distributed training. However, the <fix_mask> is to indicate to fix the mask or not, and a valid input is either 0 or 1 (1 means to fix the mask).

Replicating Results

Replicating each of the tables and figures present in the original paper can be done by running the following:

# Table 1 - Parameter Efficient Fine-Tuning on GLUE

$ bash transformers/examples/text-classification/scripts/run_table_1.sh
# Figure 2 - Mask Sparsity Ablation and Sample Ablation

$ bash transformers/examples/text-classification/scripts/run_figure_2.sh
# Table 2 - Distributed Training on GLUE

$ bash transformers/examples/text-classification/scripts/run_table_2.sh
# Table 3 - Distributed Training on CIFAR10

$ bash cifar10-fast/scripts/distributed_training.sh

# Table 4 - Efficient Checkpointing

$ bash cifar10-fast/scripts/small_checkpoints.sh

Notes

  • For reproduction of Diff Pruning results from Table 1, see code here.

Acknowledgements

We thank Yoon Kim, Michael Matena, and Demi Guo for helpful discussions.

Owner
Varun Nair
Hi! I'm a student at Duke University studying CS. I'm interested in researching AI/ML and its applications in medicine, transportation, & education.
Varun Nair
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022