Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

Related tags

Deep Learningacon
Overview

CVPR 2021 | Activate or Not: Learning Customized Activation.

This repository contains the official Pytorch implementation of the paper Activate or Not: Learning Customized Activation, CVPR 2021.

ACON

We propose a novel activation function we term the ACON that explicitly learns to activate the neurons or not. Below we show the ACON activation function and its first derivatives. β controls how fast the first derivative asymptotes to the upper/lower bounds, which are determined by p1 and p2.

Training curves

We show the training curves of different activations here.

TFNet

To show the effectiveness of the proposed acon family, we also provide an extreme simple toy funnel network (TFNet) made only by pointwise convolution and ACON-FReLU operators.

Main results

The following results are the ImageNet top-1 accuracy relative improvements compared with the ReLU baselines. The relative improvements of Meta-ACON are about twice as much as SENet.

The comparison between ReLU, Swish and ACON-C. We show improvements without additional amount of FLOPs and parameters:

Model FLOPs #Params. top-1 err. (ReLU) top-1 err. (Swish) top-1 err. (ACON)
ShuffleNetV2 0.5x 41M 1.4M 39.4 38.3 (+1.1) 37.0 (+2.4)
ShuffleNetV2 1.5x 299M 3.5M 27.4 26.8 (+0.6) 26.5 (+0.9)
ResNet 50 3.9G 25.5M 24.0 23.5 (+0.5) 23.2 (+0.8)
ResNet 101 7.6G 44.4M 22.8 22.7 (+0.1) 21.8 (+1.0)
ResNet 152 11.3G 60.0M 22.3 22.2 (+0.1) 21.2 (+1.1)

Next, by adding a negligible amount of FLOPs and parameters, meta-ACON shows sigificant improvements:

Model FLOPs #Params. top-1 err.
ShuffleNetV2 0.5x (meta-acon) 41M 1.7M 34.8 (+4.6)
ShuffleNetV2 1.5x (meta-acon) 299M 3.9M 24.7 (+2.7)
ResNet 50 (meta-acon) 3.9G 25.7M 22.0 (+2.0)
ResNet 101 (meta-acon) 7.6G 44.8M 21.0 (+1.8)
ResNet 152 (meta-acon) 11.3G 60.5M 20.5 (+1.8)

The simple TFNet without the SE modules can outperform the state-of-the art light-weight networks without the SE modules.

FLOPs #Params. top-1 err.
MobileNetV2 0.17 42M 1.4M 52.6
ShuffleNetV2 0.5x 41M 1.4M 39.4
TFNet 0.5 43M 1.3M 36.6 (+2.8)
MobileNetV2 0.6 141M 2.2M 33.3
ShuffleNetV2 1.0x 146M 2.3M 30.6
TFNet 1.0 135M 1.9M 29.7 (+0.9)
MobileNetV2 1.0 300M 3.4M 28.0
ShuffleNetV2 1.5x 299M 3.5M 27.4
TFNet 1.5 279M 2.7M 26.0 (+1.4)
MobileNetV2 1.4 585M 5.5M 25.3
ShuffleNetV2 2.0x 591M 7.4M 25.0
TFNet 2.0 474M 3.8M 24.3 (+0.7)

Trained Models

  • OneDrive download: Link
  • BaiduYun download: Link (extract code: 13fu)

Usage

Requirements

Download the ImageNet dataset and move validation images to labeled subfolders. To do this, you can use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

Train:

python train.py  --train-dir YOUR_TRAINDATASET_PATH --val-dir YOUR_VALDATASET_PATH

Eval:

python train.py --eval --eval-resume YOUR_WEIGHT_PATH --train-dir YOUR_TRAINDATASET_PATH --val-dir YOUR_VALDATASET_PATH

Citation

If you use these models in your research, please cite:

@inproceedings{ma2021activate,
  title={Activate or Not: Learning Customized Activation},
  author={Ma, Ningning and Zhang, Xiangyu and Liu, Ming and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022