SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Related tags

Deep LearningBitTrain
Overview

Training Deep Learning Models on The Edge

Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constrained edge devices. Previous work is mostly concerned with reducing the number of model parameters which is only beneficial for inference. However, memory footprint from activations is the main bottleneck for training on the edge. Existing incremental training methods fine-tune the last few layers sacrificing accuracy gains from re-training the whole model.

Training on the edge tradeoffs (computation, memory, accuracy)

In this work, we investigate the memory footprint of training deep learning models. Using our observations, we exploit activation sparsity and propose a novel bitmap compression format to save the activations during the forward pass of the training, and restoring them during the backward pass for the optimizer computations. The proposed method can be integrated seamlessly in the computation graph of modern deep learning frameworks. Our implementation is safe by construction, and has no negative impact on the accuracy of model training. Experimental results show up to 34% reduction in the memory footprint at a sparsity level of 50%. Further pruning during training results in more than 70% sparsity, which can lead to up to 56% reduction in memory footprint. This work advances the efforts towards bringing more machine learning capabilities to edge devices.

How this repo is organized

  • cpp: this folder includes the implementation of the sparse bitmap tensor in C++, and using libtorch.
  • data: is used to hold experimental data from scripts running from expr directory.
  • edgify: refers to the early implementations of the idea in Python, which did not show the potential of the idea due to the dynamic typing nature of the language. We keep this directory here for future binding with the cpp implementation (contributions are welcome!).
  • expr: contains recipes used in our experimental results.
  • test: includes test cases for the continuous integration of the future python package.

Why isn't this implemented in Python?

High-level languages used in the deep learning frameworks do not provide fine-grained memory management APIs. For example, Python depends on garbage collection techniques the frees up memory of a given object (i.e. tensor or matrix) when there is no references to it. This leaves very little control to the developer in controlling how tensors are stored in memory.

Also, all data types in Python are of type PyObject, which means that numbers, characters, strings, and bytes are actually Python objects that consumes more memory for object metadata in order to be tracked by the garbage collector. In other words, defining bits or bytes and expecting to get accurate memory measurements is infeasible. Therefore, we implemented our proposed bitmap matrix format in C++, using bitset and vector data types from the C++ standard library for storing the bitmap and the non-zero activations respectively.

License

BSD-3. See LICENSE file.

Owner
Brown University Scale Lab
Brown University Scale Lab
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022