tinykernel - A minimal Python kernel so you can run Python in your Python

Overview

tinykernel

A minimal Python kernel, so you can run Python in your Python.

All the clever stuff in this library is provided by Python's builtin ast module and compilation/exec/eval system, along with IPython's CachingCompiler which does some deep magic. tinykernel just brings them together with a little glue.

Install

With pip:

pip install tinykernel

With conda:

conda install -c fastai tinykernel

How to use

This library provides a single class, TinyKernel, which is a tiny persistent kernel for Python code:

k = TinyKernel()

Call it, passing Python code, to have the code executed in a separate Python environment:

k("a=1")

Expressions return the value of the expression:

k('a')
1

All variables are persisted across calls:

k("a+=1")
k('a')
2

Multi-line inputs are supported. If the last line is an expression, it is returned:

k("""import types
b = types.SimpleNamespace(foo=a)
b""")
namespace(foo=2)

The original source code is stored, so inspect.getsource works and, tracebacks have full details.

k("""def f(): pass # a comment
import inspect
inspect.getsource(f)""")
'def f(): pass # a comment\n'

When creating a TinyKernel, you can pass a dict of globals to initialize the environment:

k = TinyKernel(glb={'foo':'bar'})
k('foo*2')
'barbar'

Pass name to customize the string that appears in tracebacks ("kernel" by default):

k = TinyKernel(name='myapp')
code = '''def f():
    return 1/0
print(f())'''
try: k(code)
except Exception as e: print(traceback.format_exc())
", line 5, in try: k(code) File "/home/jhoward/git/tinykernel/tinykernel/__init__.py", line 20, in __call__ if expr: return self._run(Expression(expr.value), nm, 'eval') File "/home/jhoward/git/tinykernel/tinykernel/__init__.py", line 12, in _run def _run(self, p, nm, mode='exec'): return eval(compiler(p, nm, mode), self.glb) File "", line 3, in print(f()) File "", line 2, in f return 1/0 ZeroDivisionError: division by zero ">
Traceback (most recent call last):
  File "", line 5, in 
    try: k(code)
  File "/home/jhoward/git/tinykernel/tinykernel/__init__.py", line 20, in __call__
    if expr: return self._run(Expression(expr.value), nm, 'eval')
  File "/home/jhoward/git/tinykernel/tinykernel/__init__.py", line 12, in _run
    def _run(self, p, nm, mode='exec'): return eval(compiler(p, nm, mode), self.glb)
  File "", line 3, in 
    print(f())
  File "", line 2, in f
    return 1/0
ZeroDivisionError: division by zero

Acknowledgements

Thanks to Christopher Prohm, Matthias Bussonnier, and Aaron Meurer for their helpful insights in this twitter thread.

You might also like...
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

[ICCV 2021] Official Tensorflow Implementation for
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Fuzzing the Kernel Using Unicornafl and AFL++
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

Releases(0.0.2)
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022