Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Related tags

Deep Learningrobopose
Overview

Single-view robot pose and joint angle estimation via render & compare

Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic

CVPR: Conference on Computer Vision and Pattern Recognition, 2021 (Oral)

[Paper] [Project page] [Supplementary Video]

overview RoboPose. (a) Given a single RGB image of a known articulated robot in an unknown configuration (left), RoboPose estimates the joint angles and the 6D camera-to-robot pose (rigid translation and rotation) providing the complete state of the robot within the 3D scene, here illustrated by overlaying the articulated CAD model of the robot over the input image (right). (b) When the joint angles are known at test-time (e.g. from internal measurements of the robot), RoboPose can use them as an additional input to estimate the 6D camera-to-robot pose to enable, for example, visually guided manipulation without fiducial markers.

Citation

If you use this code in your research, please cite the paper:

@inproceedings{labbe2021robopose,
title= {Single-view robot pose and joint angle estimation via render & compare}
author={Y. {Labb\'e} and J. {Carpentier} and M. {Aubry} and J. {Sivic}},
booktitle={Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2021}}

Table of content

Overview

This repository contains the code for the full RoboPose approach and for reproducing all the results from the paper (training, inference and evaluation).

overview

Installation

git clone --recurse-submodules https://github.com/ylabbe/robopose.git
cd robopose
conda env create -n robopose --file environment.yaml
conda activate robopose
python setup.py install
mkdir local_data

The installation may take some time as several packages must be downloaded and installed/compiled. If you plan to change the code, run python setup.py develop.

Downloading and preparing data

All data used (datasets, models, results, ...) are stored in a directory local_data at the root of the repository. Create it with mkdir local_data or use a symlink if you want the data to be stored at a different place. We provide the utility robopose/scripts/download.py for downloading required data and models. All of the files can also be downloaded manually.

Robot URDF & CAD models

python -m robopose.scripts.download --robot=owi
python -m robopose.scripts.download --robot=kuka
python -m robopose.scripts.download --robot=panda
python -m robopose.scripts.download --robot=baxter

DREAM & CRAVES Datasets

python -m robopose.scripts.download --datasets=craves.test
python -m robopose.scripts.download --datasets=dream.test

# Only for re-training the models
python -m robopose.scripts.download --datasets=craves.train
python -m robopose.scripts.download --datasets=dream.train

Pre-trained models

python -m robopose.scripts.download --model=panda-known_angles
python -m robopose.scripts.download --model=panda-predict_angles
python -m robopose.scripts.download --model=kuka-known_angles
python -m robopose.scripts.download --model=kuka-predict_angles
python -m robopose.scripts.download --model=baxter-known_angles
python -m robopose.scripts.download --model=baxter-predict_angles
python -m robopose.scripts.download --model=owi-predict_angles

DREAM & CRAVES original results

python -m robopose.scripts.download --dream_paper_results
python -m robopose.scripts.download --craves_paper_results

Notes:

  • Dream results were extracted using the official code from https://github.com/NVlabs/DREAM.
  • CRAVES results were extracted using the code provided with the paper. We slightly modified this code to compute the errors on the whole LAB dataset, the code used can be found on our fork.

Note on GPU parallelization

Training and evaluation code can be parallelized across multiple gpus and multiple machines using vanilla torch.distributed. This is done by simply starting multiple processes with the same arguments and assigning each process to a specific GPU via CUDA_VISIBLE_DEVICES. To run the processes on a local machine or on a SLUMR cluster, we use our own utility job-runner but other similar tools such as dask-jobqueue or submitit could be used. We provide instructions for single-node multi-gpu training, and for multi-gpu multi-node training on a SLURM cluster.

Single gpu on a single node

# CUDA ID of GPU you want to use
export CUDA_VISIBLE_DEVICES=0
python -m robopose.scripts.example_multigpu

where scripts.example_multigpu can be replaced by scripts.run_pose_training or scripts.run_robopose_eval (see below for usage of training/evaluation scripts).

Configuration of job-runner for multi-gpu usage

Change the path to the code directory, anaconda location and specify a temporary directory for storing job logs by modifying `job-runner-config.yaml'. If you have access to a SLURM cluster, specify the name of the queue, it's specifications (number of GPUs/CPUs per node) and the flags you typically use in a slurm script. Once you are done, run:

runjob-config job-runner-config.yaml

Multi-gpu on a single node

# CUDA IDS of GPUs you want to use
export CUDA_VISIBLE_DEVICES=0,1
runjob --ngpus=2 --queue=local python -m robopose.scripts.example_multigpu

The logs of the first process will be printed. You can check the logs of the other processes in the job directory.

On a SLURM cluster

runjob --ngpus=8 --queue=gpu_p1  python -m robopose.scripts.example_multigpu

Reproducing results using pre-trained models

We provide the inference results on all datasets to reproduce the results from the paper. You can download these results, generate the tables and qualitative visualization of our predictions on the test datasets. The results will be downloaded to local_data/results.

Downloading inference results

# Table 1, DREAM paper results (converted from the original format)
python -m robopose.scripts.download --results=dream-paper-all-models

# Table 1, DREAM Known joint angles
python -m robopose.scripts.download --results=dream-known-angles

# Table 1, DREAM Unknown joint angles
python -m robopose.scripts.download --results=dream-unknown-angles

# Table 2, Iterative results
python -m robopose.scripts.download --results=panda-orb-known-angles-iterative

# Table 3, Craves-Lab
python -m robopose.scripts.download --results=craves-lab

# Table 4, Craves Youtube
python -m robopose.scripts.download --results=craves-youtube

# Table 5, Analysis of the choice of reference point
python -m robopose.scripts.download --results=panda-reference-point-ablation

# Table 6, Analysis of the choice of the anchor part
python -m robopose.scripts.download --results=panda-anchor-ablation

# Sup. Mat analysis of the number of iterations
python -m robopose.scripts.download --results=panda-train_iterations-ablation

You can generate the numbers from the tables from these inference/evaluation results using the notebook notebooks/generate_results.ipynb.

You can generate visualization of the results using the notebook notebooks/visualize_predictions.ipynb. overview

Running inference

We provide the code for running inference and re-generate all results. This is done using the run_robot_eval script. The results were obtained using the following commands:

## Main results and comparisons
# DREAM datasets,  DREAM models
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda  --model=dream-all-models --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-baxter --model=dream-all-models --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-kuka  --model=dream-all-models --id 1804

# DREAM datasets, ours (known joints)
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda  --model=knownq --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-baxter --model=knownq --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-kuka   --model=knownq --id 1804

# DREAM datasets, ours (unknown joints)
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda  --model=unknownq --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-baxter --model=unknownq --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-kuka   --model=unknownq --id 1804

# CRAVES LAB dataset
runjob --ngpus=8 python scripts/run_robot_eval.py --datasets=craves-lab --model=unknownq --id 1804

# CRAVES Youtube dataset
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=500 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=750 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=1000 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=1250 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=1500 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=1750 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=2000 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=5000 --id 1804


## Ablations
# Online evaluation, Table 2
runjob --ngpus=8 python scripts/run_robot_eval.py --datasets=dream-panda-orb --model=knownq --id 1804 --eval_all_iter
runjob --ngpus=1 python scripts/run_robot_eval.py --datasets=dream-panda-orb --model=knownq-online --id 1804

# Analysis of reference point, Table 5
python -m robopose.scripts.download --models=ablation_reference_point
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link0 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link1 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link5 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link2 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link4 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link9 --id 1804

# Analysis of anchor part, Table 6
python -m robopose.scripts.download --models=ablation_anchor
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link1 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link2 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link5 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link0 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link4 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link9 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-random_all --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-random_top5 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-random_top3 --id 1804

# Analysis of number of iterations, Supplementary Material.
python -m robopose.scripts.download --models=ablation_train_iterations
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=train_K=1 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=train_K=2 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=train_K=3 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=train_K=5 --id 1804

Re-training the models

We provide all the training code.

Background images for data augmentation

We apply data augmentation to the training images. Data augmentation includes pasting random images of the pascal VOC dataset on the background of the scenes. You can download Pascal VOC using the following commands:

cd local_data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_11-May-2012.tar

(If the website is down, which happens periodically, you can alternatively download these files from a mirror at https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar)

Reproducing models from the paper

runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-panda-gt_joints
runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-panda-predict_joints

runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-baxter-gt_joints
runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-baxter-predict_joints

runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-kuka-gt_joints
runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-kuka-predict_joints

runjob --ngpus=44  python scripts/run_articulated_training.py --config=craves-owi535-predict_joints
Owner
Yann Labbé
PhD Student at INRIA Willow in computer vision and robotics.
Yann Labbé
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022