Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Overview

Neural Retrieval

License

Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as Wikipedia) to pre-train siamese neural retrieval models. The resulting models significantly improve over previous BM25 baselines as well as state-of-the-art neural methods.

This package provides support for leveraging BART-large for query synthesis as well as code for training and finetuning a transformer based neural retriever. We also provide pre-generated synthetic queries on Wikipedia, and relevant pre-trained models that are obtainable through our download scripts.

Paper: Davis Liang*, Peng Xu*, Siamak Shakeri, Cicero Nogueira dos Santos, Ramesh Nallapati, Zhiheng Huang, Bing Xiang, Embedding-based Zero-shot Retrieval through Query Generation, 2020.

Getting Started

dependencies:

pip install torch torchvision transformers tqdm

running setup

python setup.py install --user

Package Version
torch >=1.6.0
transformers >=3.0.2
tqdm 4.43.0

WikiGQ dataset and Pretrained Neural Retrieval Model

  • WikiGQ: We process the Wikipedia 2016 dump and split it into passages of maximum length 100 with respecting the sentence boundaries. We synthesis over 100M synthetic queries using BART-large models. The split passages and synthetic queries files can be downloaded from here.
  • Siamese-BERT-base-model: We release our siamese-bert-base-model trained on WikiGQ dataset. The model files can be downloaded from here.

Training and Evaluation

Example: Natural Questions (NQ)

Here we take an example on Natural Questions data. Please download the simplified version of the training set and also use supplied simplify_nq_example function in simplify_nq_data.py to create the simplified dev set as well.

process the data

We provide the python script to convert the data into the format our model consumes.

NQ_DIR=YOUR PATH TO SIMPLIFIED NQ TRAIN AND DEV FILES
python data_processsing/nq_preprocess.py \
--trainfile $NQ_DIR/v1.0-simplified-train.jsonl.gz \
--devfile $NQ_DIR/v1.0-simplified-dev.jsonl.gz \
--passagefile $NQ_DIR/all_passages.jsonl \
--queries_trainfile $NQ_DIR/train_queries.json \
--answers_trainfile $NQ_DIR/train_anwers.json \
--queries_devfile $NQ_DIR/dev_queries.json \
--answers_devfile $NQ_DIR/dev_answers.json \
--qrelsfile $NQ_DIR/all_qrels.txt

training

OUTPUT_DIR=./output
mkdir -p $OUTPUT_DIR
python examples/neural_retrieval.py \
--query_len 64 \
--passage_len 288 \
--epochs 10 \
--sample_size 0 \
--batch_size 50 \
--embed_size 128 \
--print_iter 200 \
--eval_iter 0 \
--passagefile $NQ_DIR/all_passages.jsonl \
--train_queryfile $NQ_DIR/train_queries.json \
--train_answerfile $NQ_DIR/train_answers.json \
--save_model $OUTPUT_DIR/siamese_model.pt \
--share \
--gpu \
--num_nodes 1 \
--num_gpus 1 \
--train 

This will generate two model files in the OUTPUT_DIR: siamese_model.pt.doc and siamese_model.pt.query. They are exactly the same if your add --share during training.

Inference

  • Passage Embedding
python examples/neural_retrieval.py \
--query_len 64 \
--passage_len 288 \
--embed_size 128 \
--passagefile $NQ_DIR/all_passages.jsonl \
--gpu \
--num_nodes 1 \
--num_gpus 1 \
--local_rank 0 \
--doc_embed \
--doc_embed_file $OUTPUT_DIR/psg_embeds.csv \
--save_model $OUTPUT_DIR/siamese_model.pt 
  • Running Retrieval
python examples/neural_retrieval.py \
--query_len 64 \
--passage_len 288 \
--batch_size 100 \
--embed_size 128 \
--test_queryfile $NQ_DIR/dev_queries.json \
--gpu \
--num_nodes 1 \
--num_gpus 1 \
--local_rank 0 \
--topk 100 \
--query_embed \
--query_embed_file $OUTPUT_DIR/dev_query_embeds.csv \
--generate_retrieval \
--doc_embed_file $OUTPUT_DIR/psg_embeds.csv \
--save_model $OUTPUT_DIR/siamese_model.pt  \
--retrieval_outputfile $OUTPUT_DIR/dev_results.json
  • Evaluation

We use trec_eval to do the evaluation.

trec_eval $NQ_DIR/all_qrels.txt $OUTPUT_DIR/dev_results.json.txt -m recall 

BART Model for Query Generation

Finetune BART-QG Model on MSMARCO-PR dataset

MSMARCO_PATH=YOUR PATH TO MSMARCO FILES
QG_MODEL_OUTPUT=./qg_model_output
mkdir -p $QG_MODEL_OUTPUT
CUDA_VISIBLE_DEVICES=0,1,2,3 python examples/bart_qg.py \
--corpusfile $MSMARCO_PATH/collection.tsv \
--train_queryfile $MSMARCO_PATH/queries.train.tsv \
--train_qrelfile $MSMARCO_PATH/qrels.train.tsv \
--valid_queryfile $MSMARCO_PATH/queries.dev.tsv \
--valid_qrelfile $MSMARCO_PATH/qrels.dev.tsv \
--max_input_len 300 \
--max_output_len 100 \
--epochs 5 \
--lr 3e-5 \
--warmup 0.1 \
--wd 1e-3 \
--batch_size 24 \
--print_iter 100 \
--eval_iter 5000 \
--log ms_log \
--save_model $QG_MODEL_OUTPUT/best_qg.pt \
--gpu

Generate Synthetic Queries

As an example, we generate synthetic queries on NQ passages.

QG_OUTPUT_DIR=./qg_output
mkdir -p $QG_OUTPUT_DIR
python examples/bart_qg.py \
--test_corpusfile $QG_OUTPUT_DIR/all_passages.jsonl \
--test_outputfile $QG_OUTPUT_DIR/generated_questions.txt \
--generated_queriesfile $QG_OUTPUT_DIR/syn_queries.json \
--generated_answersfile $QG_OUTPUT_DIR/syn_answers.json \
--model_path $QG_MODEL_OUTPUT/best_qg_ms.pt \
--test \
--num_beams 5 \
--do_sample \
--num_samples 10 \
--top_p 0.95 \
--gpu

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Owner
Amazon Web Services - Labs
AWS Labs
Amazon Web Services - Labs
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023