Pytorch library for end-to-end transformer models training and serving

Overview

Russian GPT-2

Google colab notebook for finetuning.

https://colab.research.google.com/drive/1jwFks82BLyy8x3oxyKpiNdlL1PfKSQwW?usp=sharing

Google colab notebook for generating text corpus.

https://colab.research.google.com/drive/1Hsp2508TXMR0ihYOLjKYOzWm9byqg9ue

1. I just want to play with your models

You can try writing with the model here https://porfirevich.ru and with Telegram chat bot @PorfBot

You can try poetry with Telegram chat bot @NeuroPoetBot

2. What are results?

Your perplexity will be different, depending on the tokenizer, the vocab and the dataset. The better your tokenizer the worse your perplexity, actually.

Values in the table are perplexity on the validation set.

Huge dataset

GPT-2 Small, 124M. BS 64 Medium, 355M. BS 32
Unfreeze 0, LR 24e-4 80 epoch, 85-90 80 epoch, 81-85
Unfreeze 0, LR 3e-4 80 epoch, 75-76 100 epoch, 64-65
Unfreeze 0, LR 6e-5 80 epoch, 73-73.5 40 epoch, 63-63.5
Unfreeze 1, LR 3e-4 118 epoch, 51-52 142 epoch, 42.3-43.7
Unfreeze 1, LR 6e-5 80 epoch, 49-49.5 40 epoch, 41.-41.6
Unfreeze 2, LR 3e-4 70 epoch, 45.5 68 epoch, 37.2-38.6
Unfreeze 2, LR 6e-5 200 epoch, 41.18-42.19 87 epoch, 35.4-35.9
Unfreeze 7, LR 3e-4 90 epoch, 35.3 - 35.9 163 epoch, 28.6-29.6
Unfreeze 7, LR 6e-5 88 epoch, 32.6-33. 90 epoch, 27.2-27.5
Unfreeze -1 (all), LR 6e-5 160 epoch, 30.5-30.9 163 epoch, 23.8-24.15

Classics dataset. It's only 500Mb and GPT-2 overfits it pretty fast.

GPT-2 Small, 124M Medium, 355M
Unfreeze -1 (all) 28 epoch, 26.22 7 epoch, 20.9722

Poetry dataset

GPT-2 Small, 124M Medium, 355M
Unfreeze -1 (all) 25 epoch, 26.22 7 epoch, 48.36

Pelevin dataset

GPT-2 Small, 124M Medium, 355M
Unfreeze -1 (all) 5 epoch, 44.55 3 epoch, 33.38

I've trained the model using gradual unfreezing with '--unfreeze_level' parameter. The sequence was 0,1,2,7,-1 (as in the table with results). When loss don't improve for a day I switch to next value (like from 2 to 7). You can find my exact scripts in tpu/schedule_small.txt and tpu/schedule_medium.txt.

3. I'd like to download your models

The model that isn't fine-tuned on any author is here

pip install awscli
aws s3 sync --no-sign-request s3://models.dobro.ai/gpt2/ru/unfreeze_all gpt2

Folders with s_ prefix contain Small (124M) model, m_ - for Medium (355M) model.

To understand how to generate text you should start by looking at rest.py.

Also, you can download all fine-tuned models.

aws s3 sync --no-sign-request s3://models.dobro.ai/gpt2/ru all

The one with which you can play on the site is located in the Pelevin folder.

4. I've got a small Russian dataset and I want to finetune your model on it

Download the models (intructions above), choose the model and put it in your output folder. Use validation set and be careful with overfitting. On small dataset it will overfit very fast - 3-7 epoch. Follow instructions below, except you don't need to train you tokenization dictionary, because you already have one.

5. I've got a big dataset on my lang and I want to train GPT-2 on it

I'd suggest that if you don't have a bunch of GPU's you should consider renting a Google TPU. On my Nvidia Titan RTX an epoch takes 70 minutes and the same epoch takes 12.5 minutes on TPU v3-8. I've used fp16 on GPU, but I can't use bfloat16 on TPU, because it's training poorly on bfloat16 at the moment (it could have been 8 minutes if implemented properly).

You can ask for access to Google's TensorFlow Research Cloud and use TPUs for free for one month.

In the process, I've switched tokenization library from SentencePiece to YTTM. YTTM is better (10% smaller files) and much faster. If you for some reason want to use SentencePiece then the code is here, just change the tokenizer in the command line.

First, the GPT-2 model will learn Russian on a huge dataset (230 GB), and then it will learn good Russian on the Russian classical literature (500 MB). I use progressive layer unfreezing to use transfer training. Validation set is the correspondence between Leo Tolstoy with young Mahatma Gandhi.

5.1. Download a fb2 library

Main link

For finetuning first second Dostoyevskiy Tolstoy Pushkin Bulgakov Gogol Pelevin

5.2. Install dependencies

sudo xargs -a apt.txt apt install
conda env create -f environment.yml

5.3. Build and Install SentencePiece (skip if use YTTM)

Follow instructions here https://github.com/google/sentencepiece

5.4. Prepare the dataset files

Use corpus/corpus.ipynb on your dataset.

Or in google colab: https://colab.research.google.com/drive/1Hsp2508TXMR0ihYOLjKYOzWm9byqg9ue

5.5. Create vocabulary for the YTTM (and SentencePiece) tokenizer

You can skip this step if you want only to finetune the model with the existing vocab.

yttm bpe --data ./corpus/tmp/russian_corpus_for_vocab.txt --model bpe/yt.model --vocab_size 50257 --coverage 0.9999

# SentencePiece
spm_train --input=./corpus/tmp/russian_corpus_for_vocab.txt --model_prefix=bpe/m50 --vocab_size=50257 --user_defined_symbols='<|n|>'

5.6. If you want to use Google TPU, go here https://github.com/mgrankin/ru_transformers/tree/master/tpu

5.7. Install fp16 support

Mixed precision training with opt_level O2 gives the exact same loss but much faster and with less memory. The downside - APEX with O2 doesnt work with DataParallel yet, see https://github.com/NVIDIA/apex/issues/227

5.7.1 Make sure to install proper bare metal cuda.

wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run -O cuda.run
chmod +x cuda.run
sudo ./cuda.run

5.7.2 Apex

export CUDA_HOME=/usr/local/cuda-10.2
git clone https://github.com/NVIDIA/apex
cd apex
# fix setup.py if complains for version mismatch
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

5.8. Train your model!

cd ru_transformers
conda activate gpt
export TRAIN_FILE=./data/classic

# GPT-2 124M, final perplexity ?

export CUDA_VISIBLE_DEVICES=1
export MODEL_SIZE=gpt2
export OUTPUT=output_yt/s
export BS=8
export LR=5e-5

# GPT-2 355M, final perplexity 18.99?

export CUDA_VISIBLE_DEVICES=2
export MODEL_SIZE=gpt2-medium
export OUTPUT=output_yt/m
export BS=3
export LR=3e-5

# GPT-2 774M, final perplexity 21.09?

export CUDA_VISIBLE_DEVICES=3
export MODEL_SIZE=gpt2-large
export OUTPUT=output_yt/l
export BS=1
export LR=1e-5

# training script

# You shouldn't use --model_name_or_path=$MODEL_SIZE if you want to start with pre-trained Russian GPT-2. If you set --model_name_or_path=gpt2 you'll start with English GPT-2. For Russian GPT-2 you should download the model, put it in the output dir and use --model_name_or_path=$OUTPUT.
# This step will download an English GPT-2 to the $OUTPUT and start training it.
# If you want to start from Russian GPT-2 then skip this step. Instead download the Russian GPT-2, put it to $OUTPUT manually. 
python run_lm_finetuning.py \
    --output_dir=$OUTPUT \
    --model_type=gpt2 \
    --model_name_or_path=$MODEL_SIZE \
    --do_train \
    --train_data_file=$TRAIN_FILE \
    --per_gpu_train_batch_size $BS \
    --save_steps=10000 \
    --logging_steps=1 \
    --fp16 \
    --fp16_opt_level O2 \
    --warmup_samples 16000 \
    --learning_rate $LR \
    --tokenizer_class YTEncoder \
    --tokenizer_name bpe/yt.model \
    --do_eval \
    --evaluate_during_training \
    --eval_steps 1000 \
    --eval_data_file=./data/classic/valid \
    --unfreeze_level 0

# My dataset is 230Gb and it doesn't fit in RAM, so each epoch is a random sample from it. That is why the loop.
while true
do
    python run_lm_finetuning.py \
        --output_dir=$OUTPUT \
        --model_type=gpt2 \
        --model_name_or_path=$OUTPUT \
        --do_train \
        --train_data_file=$TRAIN_FILE \
        --per_gpu_train_batch_size $BS \
        --save_steps=10000 \
        --logging_steps=10 \
        --fp16 \
        --fp16_opt_level O2 \
        --warmup_samples 16000 \
        --learning_rate $LR \
        --overwrite_output_dir \
        --tokenizer_class YTEncoder \
        --tokenizer_name bpe/yt.model \
        --do_eval \
        --evaluate_during_training \
        --eval_steps 1000 \
        --eval_data_file=./data/classic/valid \
        --save_total_limit 30 \
        --num_train_epochs 10.0 \
        --unfreeze_level 0

    sleep 1
done


# with decay
python run_lm_finetuning.py \
    --output_dir=$OUTPUT \
    --model_type=gpt2 \
    --model_name_or_path=$OUTPUT \
    --do_train \
    --train_data_file=$TRAIN_FILE \
    --per_gpu_train_batch_size $BS \
    --save_steps=10000 \
    --logging_steps=10 \
    --fp16 \
    --fp16_opt_level O2 \
    --warmup_samples 16000 \
    --learning_rate $LR \
    --overwrite_output_dir \
    --tokenizer_class YTEncoder \
    --tokenizer_name bpe/yt.model \
    --do_eval \
    --evaluate_during_training \
    --eval_steps 1000 \
    --eval_data_file=./data/classic/valid \
    --save_total_limit 30 \
    --num_train_epochs 3.0 \
    --unfreeze_level 0 \
    --lr_decay

# and then repeat with unfreeze_level 1,2,3...

5.9. Save trained model

aws s3 cp output_s/config.json s3://models.dobro.ai/gpt2/ru/small/
aws s3 cp output_s/encoder.model s3://models.dobro.ai/gpt2/ru/small/
aws s3 cp output_s/pytorch_model.bin s3://models.dobro.ai/gpt2/ru/small/

5.10. Deploy the model

git clone https://github.com/mgrankin/ru_transformers.git
cd ru_transformers
mkdir logs
aws s3 sync --no-sign-request s3://models.dobro.ai/gpt2/ru gpt2
cp -R gpt2/pelevin/m_checkpoint-3365357 gpt2/medium
cp -R gpt2/poetry/m_checkpoint-3397989 gpt2/medium/poetry
conda env create -f environment.yml
conda activate gpt
uvicorn rest:app --reload --host 0.0.0.0
# crontab  DEVICE="cuda:1"
# @reboot /bin/bash -c "cd ru_transformers; git pull; source ~/.bashrc; conda activate gpt; DEVICE="cuda:1" uvicorn rest:app --reload --host 0.0.0.0"

6. Additional scripts

evaluate_model.py - to evaluate your model using input file or prompt.

text_processing.py - to process your dataset.

to_token_convertor.py - to convert your string to tokens. In case if you curious.

Owner
Mikhail Grankin
Mikhail Grankin
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution ๐Ÿ“œ Technical report ๐Ÿ—จ๏ธ Presentation ๐ŸŽ‰ Announcement ๐Ÿ›†Motion Prediction Channel Website ๐Ÿ›†

158 Jan 08, 2023
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | ็ฎ€ไฝ“ไธญๆ–‡ Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 โ€” Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022