当前位置:网站首页>Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
2022-08-11 06:16:00 【zhSunw】
Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
Brief introduction~~
Framework PointNet++ as backbone.
- Backbone segmented the semantic (FG/BG) information for each point after extracting features and predicted the information of BBox (offset, dim, θ).
- Offset and cluster the foreground points, assign an ID to each category of points as an instance, and obtain a BBox by averaging the information of the first 5 predictions for each instance.
- Instance-aware RoI polling: Foreground points that are not in BBox but have corresponding IDs are also used for Refinement; foreground points that are in BBox but do not have corresponding IDs are deleted.(That is, each object proposal in Refinement considers the point of the instance instead of the point in the Box.)
边栏推荐
猜你喜欢
随机推荐
Pay “Attention” to Adverse Weather
动画(其二)
lvs的keepalived
LiDAR Snowfall Simulation for Robust 3D Object Detection
梅科尔工作室-Pr第一次培训笔记(安装及项目创建)
DOM破坏
centos—docker安装mysql
LiDAR Snowfall Simulation for Robust 3D Object Detection
内核与用户空间通过字符设备通信
Nodered系列—使用mqtt写入国产数据库tDengine
梅科尔工作室-HarmonyOS应用开发第四次培训
梅科尔工作室-华为云ModelArts第二次培训
2022年最新安全帽佩戴识别系统
安全帽识别算法
数据库的基本语法(其一)
关于安全帽识别系统,你需要知道的选择要点
GBase 8s共享内存中的常驻内存段
【OAuth2】授权机制
Toward a Unified Model
正则表达式与绕过案例