当前位置:网站首页>[Study Notes] Dual Theorem of Linear Programming
[Study Notes] Dual Theorem of Linear Programming
2022-08-11 10:54:00 【OneInDark】
注:Vectors are not necessarily marked in bold,尤其是 x , y x,y x,y,Because their bold is so ugly.
Definition. 向量比较 x < y x<y x<y 等价于 ∀ i , x i < y i \forall i,\;x_i<y_i ∀i,xi<yi,That is, a numerical comparison is made on each component.
半空间( affine halfspaces \text{affine halfspaces} affine halfspaces):形如 { x : a T x ⩽ b } \{x:\mathbf a^{\sf T}x\leqslant b\} { x:aTx⩽b},其中 x ∈ R dim a x\in\Reals^{\dim\bf a} x∈Rdima .
polyhedron( polyhedra/polyhedron \text{polyhedra/polyhedron} polyhedra/polyhedron):A limited half-space intersection.它等价于 P = { x : A x ⩽ b } P=\{x:\mathscr Ax\leqslant\bf b\} P={ x:Ax⩽b},其中 A \mathscr A A 是 m × n m\times n m×n 矩阵, b ∈ R m \mathbf b\in\Reals^m b∈Rm 而 x ∈ R n x\in\Reals^n x∈Rn .
多胞体( polytope \text{polytope} polytope):The convex hull generated by a finite number of vectors.Equivalent to finite size p o l y h e d r o n \rm polyhedron polyhedron .
Comment. I'm not sure what the Chinese translations of the above things should be.
Proposition. 若 x ∉ P x\notin P x∈/P 其中 P P P 是 p o l y h e d r a \rm polyhedra polyhedra,There is a half space C C C 使得 P ⊆ C P\subseteq C P⊆C 且 x ∉ C x\notin C x∈/C .
The proof of the theorem is difficult to separate from the support of geometry:需要找到 y ∈ P y\in P y∈P 使得 ∥ x − y ∥ \Vert x-y\Vert ∥x−y∥ 最小,而 y y y The existence of is guaranteed by its geometrically intuitive properties.But if you admit the use of geometry in it,Then the theorem is obvious.Therefore, no proof is given here.
Lemma.( Farkas’ lemma \text{Farkas' lemma} Farkas’ lemma) A x = b \mathscr Ax=\mathbf b Ax=b 有 x ⩾ 0 x\geqslant\mathbf 0 x⩾0 的解,当且仅当 A T y ⩾ 0 ∧ b T y < 0 \mathscr A^{\sf T}y\geqslant\mathbf 0\land \mathbf b^{\sf T}y<0 ATy⩾0∧bTy<0 无 y ∈ R n y\in\R^n y∈Rn 的解.
Proof. 当 A x = b \mathscr Ax=\mathbf b Ax=b 有解时,Counter-evidence y y y 有解,则
0 > b T y = ( A x ) T ⋅ y = x T ( A T y ) ⩾ 0 0>\mathbf b^{\sf T}y=(\mathscr Ax)^{\sf T}\cdot y=x^{\sf T}(\mathscr A^{\sf T}y)\geqslant 0 0>bTy=(Ax)T⋅y=xT(ATy)⩾0
当 A x = b \mathscr Ax=\mathbf b Ax=b 无解时,设 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,…,an 为 A \mathscr A A 的列向量,令 C C C for their convex hull,则 x x x Unsolved is equivalent to b ∉ C \mathbf b\notin C b∈/C,So there is a half plane division b \mathbf b b 和 C C C,That is, there is a vector y y y 使得 b T y < 0 \mathbf b^{\sf T}y<0 bTy<0 且 x T y ⩾ 0 ( x ∈ C ) x^{\sf T}y\geqslant 0\;(x\in C) xTy⩾0(x∈C),The latter contains A T y ⩾ 0 \mathscr A^{\sf T}y\geqslant 0 ATy⩾0 . ■ \blacksquare ■
Corollary. 设 P = { x : A x ⩽ b } ≠ ∅ P=\{x:\mathscr Ax\leqslant\mathbf b\}\ne\varnothing P={ x:Ax⩽b}=∅,则 ∀ x ∈ P , c T x ⩽ δ \forall x\in P,\;\mathbf c^{\sf T}x\leqslant\delta ∀x∈P,cTx⩽δ 等价于 ∃ y ⩾ 0 , A T y = c ∧ b T y ⩽ δ \exists y\geqslant 0,\;\mathscr A^{\sf T}y=c\land\mathbf b^{\sf T}y\leqslant\delta ∃y⩾0,ATy=c∧bTy⩽δ .
Proof. 充分性:若 y y y 存在,there is immediately
A x ⩽ b * y T A x ⩽ y T b * c T x ⩽ y T b * c T x ⩽ δ \mathscr Ax\leqslant\mathbf b \implies y^{\sf T}\mathscr Ax\leqslant y^{\sf T}\mathbf b \implies\mathbf c^{\sf T}x\leqslant y^{\sf T}\mathbf b \implies\mathbf c^{\sf T}x\leqslant\delta Ax⩽b*yTAx⩽yTb*cTx⩽yTb*cTx⩽δ
必要性:It's essentially solving equations
( y T λ ) ( A b 0 1 ) = ( c T δ ) \begin{pmatrix}y^{\sf T} & \lambda\end{pmatrix} \begin{pmatrix} A & b\\ 0 & 1\end{pmatrix} =\begin{pmatrix}\mathbf c^{\sf T} & \delta\end{pmatrix} (yTλ)(A0b1)=(cTδ)
的 y T , λ ⩾ 0 y^{\sf T},\lambda\geqslant 0 yT,λ⩾0 的解.由 Farkas’ lemma \text{Farkas' lemma} Farkas’ lemma 可知存在 z , μ ∈ R z,\mu\in\Reals z,μ∈R 使得
( A b 0 1 ) ( z μ ) ⩾ 0 and ( c T δ ) ( z μ ) < 0 \begin{pmatrix} A & b\\ 0 & 1\end{pmatrix} \begin{pmatrix}z \\ \mu\end{pmatrix}\geqslant 0 \quad\text{and}\quad \begin{pmatrix}\mathbf c^{\sf T}&\delta\end{pmatrix} \begin{pmatrix}z \\ \mu\end{pmatrix}<0 (A0b1)(zμ)⩾0and(cTδ)(zμ)<0
Known by the former μ ⩾ 0 \mu\geqslant 0 μ⩾0 .讨论 μ = 0 \mu=0 μ=0 和 μ > 0 \mu>0 μ>0 的情况,分别取 x = x 0 − γ z ( γ → + ∞ ) x=x_0-\gamma z\;(\gamma\rightarrow+\infty) x=x0−γz(γ→+∞) 和 x = − μ − 1 z x=-\mu^{-1}z x=−μ−1z Contradictions can be drawn,完成证明.Leave it as an exercise. ■ \blacksquare ■
Theorem.( Duality theorem of linear programming \text{Duality theorem of linear programming} Duality theorem of linear programming) 令 A \mathscr A A 为 m × n m\times n m×n 矩阵, b ∈ R m , c ∈ R n \mathbf b\in\Reals^m,\;\mathbf c\in\Reals^n b∈Rm,c∈Rn,则
max { c T x : A x ⩽ b } = min { y T b : y ⩾ 0 ∧ A T y = c } \max\{\mathbf c^{\sf T}x:\mathscr Ax\leqslant\mathbf b\}=\min\{y^{\sf T}\mathbf b:y\geqslant\mathbf 0\land \mathscr A^{\sf T}y=\mathbf c\} max{ cTx:Ax⩽b}=min{ yTb:y⩾0∧ATy=c}
Proof. Let the left form be δ \delta δ,根据 Corollary \text{Corollary} Corollary 立刻有 ∃ y ⩾ 0 \exists y\geqslant 0 ∃y⩾0 使得 A T y = c ∧ b T y ⩽ δ \mathscr A^{\sf T}y=\mathbf c\land\mathbf b^{\sf T}y\leqslant\delta ATy=c∧bTy⩽δ .This shows that the right-hand form is at most δ \delta δ .
The left does not exceed the right,因为 c T x = ( y T A ) ⩽ y T b \mathbf c^{\sf T}x=(y^{\sf T}\mathscr A)\leqslant y^{\sf T}\mathbf b cTx=(yTA)⩽yTb . ■ \blacksquare ■
In the usual linear programming duality x ⩾ 0 x\geqslant\mathbf 0 x⩾0,If unified to A x ⩽ b \mathscr Ax\leqslant\mathbf b Ax⩽b 中,不难发现有
max { c T x : x ⩾ 0 ∧ A x ⩽ b } = min { b T y : y ⩾ 0 ∧ A T y ⩾ c } \max\{\mathbf c^{\sf T}x:x\geqslant\mathbf 0\land\mathscr Ax\leqslant\mathbf b\}=\min\{\mathbf b^{\sf T}y:y\geqslant\mathbf 0\land\mathscr A^{\sf T}y\geqslant\mathbf c\} max{ cTx:x⩾0∧Ax⩽b}=min{ bTy:y⩾0∧ATy⩾c}
This is a special form of the duality theorem,It is also the usual duality. crashed \textsf{crashed} crashed 指出:The mutual relaxation theorem is obvious.Therefore omitted.
边栏推荐
- 【翻译】Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality Artistic Style Transfer
- [Building a 2D rasterized map using SLAM technology]
- openresty概述及Lua语言的嵌入
- STM32入门开发 LWIP网络协议栈移植(网卡采用DM9000)
- 字符函数和字符串函数的进阶
- ID3v2 Library以便能够设置
- 【Ackerman Motion Control】
- 【学习笔记】尚未用过的图论知识
- dreamweaver网页设计作业制作 学生个人网页猫眼电影 WEB静态网页作业模板 大学生个人主页博客网页代码 dw个人网页作
- Revelations!The former Huawei microservice expert wrote 500 pages of practical notes on the landing architecture, which has been open sourced
猜你喜欢

全新FIDE 编译简单评测

How to improve the efficiency of telecommuting during the current epidemic, sharing telecommuting tools

fetch请求设置请求头错误导致无法跨域

宝塔一键部署WordPress(含宝塔添加站点、阿里云安全组配置、阿里云子域名解析)

阿里云ssl证书申请,宝塔ssl证书部署

I got the P8 "top" distributed architecture manual that went viral on Ali's intranet

【应用SLAM技术建立二维栅格化地图】

宝塔计划任务执行周期设置【秒】为定时单位【或者更小】

Qihua stores the future and interprets the origin of distributed

Word小技巧之图表实现自动编号和更新
随机推荐
【luogu CF1286E】Fedya the Potter Strikes Back(字符串)(KMP)(势能分析)(线段树)
LeetCode每日一题(1754. Largest Merge Of Two Strings)
1.TCP/IP基础知识
为什么有些人不喜欢出身底层的人?
VC6.0 +WDK 开发驱动的环境配置
【综合练习12】实现静态网页的相关功能
LeetCode 剑指 Offer 35. 复杂链表的复制
【无标题】(完美解决)uni-app 小程序下拉刷新后刷新图标无法正常恢复的问题
[Central Task Scheduling System - Communication Development]
齐话存储未来,诠释分布式缘起
【luogu CF1427F】Boring Card Game(贪心)(性质)
不可思议,全靠这份Android面试题,斩获多家互联网大厂offer
假设检验:正态性检验的那些bug——为什么对同一数据,normaltest和ktest会得到完全相反的结果?
【Mysql系列】03_系统设计
ASP.NET Core 6框架揭秘实例演示[32]:错误页面的集中呈现方式
fetch请求设置请求头错误导致无法跨域
logstash/filebeat只接收最近一段时间的数据
Latex引用图片 发现 显示的图片标号不对
【中央任务调度系统—通信开发】
困扰所有SAP顾问多年的问题终于解决了