当前位置:网站首页>SCNet: Semantic Consistency Networks for 3D Object Detection
SCNet: Semantic Consistency Networks for 3D Object Detection
2022-08-11 06:16:00 【zhSunw】
The framework uses VoteNet and PointNet++ as the pipeline.
- Semantic Voting: Semantic information is also used as information for each point voting (prediction)
- The two MLP branches complete the voting of normal VoteNet (xyz coordinates and feature features) and Semantic Vote respectively
- Combines the two branch predictions at each point
- Loss Function
Set hyperparameter weights for eachTask loss is weighted - Semantic Consistency Mechanism and Loss
as aboveAs shown, take the center of each BBox as the center of the sphere, and set the point within the sphere with a radius of 0.2m to calculate the semantic consistency loss:
pi is the predicted probability of BBox, sj is the semantic information of each query point.
The model can learn the relationship between geometric information and semantic information, making the prediction of BBOX more accurate.
边栏推荐
猜你喜欢
随机推荐
>>开发工具:开发工具排名对比
Androd 基本布局(其一)
基于uniapp开发的聊天界面
目标检测——Faster R-CNN 之 Fast R-CNN
Redis主从复制的搭建
azkaban集群部署
uniapp 在HBuilder X中配置微信小程序开发工具
>>技术应用:用于 REST API 开发和测试的 10 大工具
GBase 8s的多线程结构
内核与用户空间通过字符设备通信
Maykle Studio - Second Training in HarmonyOS App Development
>>数据管理:DAMA简介
OpenPCDet安装最新版:spconv一步到位
安全帽识别
mysql基本概念之存储引擎
GBase 8s性能简介
@2022-02-22:每日一语
AIDL 简介以及使用
mysq基础语句+高级操作(学这篇就够了)
GBase 8s与Oracle存储对比