当前位置:网站首页>SCNet: Semantic Consistency Networks for 3D Object Detection
SCNet: Semantic Consistency Networks for 3D Object Detection
2022-08-11 06:16:00 【zhSunw】
The framework uses VoteNet and PointNet++ as the pipeline.
- Semantic Voting: Semantic information is also used as information for each point voting (prediction)
- The two MLP branches complete the voting of normal VoteNet (xyz coordinates and feature features) and Semantic Vote respectively
- Combines the two branch predictions at each point
- Loss Function
Set hyperparameter weights for eachTask loss is weighted - Semantic Consistency Mechanism and Loss
as aboveAs shown, take the center of each BBox as the center of the sphere, and set the point within the sphere with a radius of 0.2m to calculate the semantic consistency loss:
pi is the predicted probability of BBox, sj is the semantic information of each query point.
The model can learn the relationship between geometric information and semantic information, making the prediction of BBOX more accurate.
边栏推荐
猜你喜欢
随机推荐
内核与用户空间通过字符设备通信
基于uniapp开发的聊天界面
动画(其二)
>>开发工具:开发工具排名对比
Rethinking LiDAR Object Detection in adverse weather conditions
DNS外带注入SQLMAP
GBase 8s 执行计划查询分析
SCNet:Semantic Consistency Networks for 3D Object Detection
微信小程序部分功能细节
关于安全帽识别系统,你需要知道的选择要点
CVPR2022——A VERSATILE MULTI-VIEW FRAMEWORK
The selection points you need to know about the helmet identification system
Mysql导入UTF8编码数据库命令总结
华为手机软键盘挡住Toast
梅科尔工作室-华为云ModelArts第一次培训
Waymo数据集使用介绍(waymo-open-dataset)
梅科尔工作室-HarmonyOS应用开发第三次培训
xss.haozi靶场通关
关于修改挂载到宿主机上的mysql配置文件不生效这件事
LAMP架构介绍及配置