当前位置:网站首页>SCNet: Semantic Consistency Networks for 3D Object Detection
SCNet: Semantic Consistency Networks for 3D Object Detection
2022-08-11 06:16:00 【zhSunw】
The framework uses VoteNet and PointNet++ as the pipeline.
- Semantic Voting: Semantic information is also used as information for each point voting (prediction)
- The two MLP branches complete the voting of normal VoteNet (xyz coordinates and feature features) and Semantic Vote respectively
- Combines the two branch predictions at each point
- Loss Function
Set hyperparameter weights for eachTask loss is weighted - Semantic Consistency Mechanism and Loss
as aboveAs shown, take the center of each BBox as the center of the sphere, and set the point within the sphere with a radius of 0.2m to calculate the semantic consistency loss:
pi is the predicted probability of BBox, sj is the semantic information of each query point.
The model can learn the relationship between geometric information and semantic information, making the prediction of BBOX more accurate.
边栏推荐
猜你喜欢
随机推荐
OpenPCDet安装最新版:spconv一步到位
LAGRANGIAN FLUID SIMULATION WITH CONTINUOUS CONVOLUTIONS
用正则验证文件名是否合法
NAT模式 LVS负载均衡群集部署
Docker安装Mysql及常用命令
LAGRANGIAN FLUID SIMULATION WITH CONTINUOUS CONVOLUTIONS
SCNet:Semantic Consistency Networks for 3D Object Detection
动画(其二)
浙江大学软件学院2020年保研上机真题练习
>>数据管理:读书笔记|第一章 数据管理
Rethinking LiDAR Object Detection in adverse weather conditions
GBase 8s的分片和索引
GBASE数据库迁移(Oracle到GBase 8s的数据类型映射)
对MySQL查询语句的分析
梅科尔工作室-华为云ModelArts第二次培训
Maykel Studio - Django Web Application Framework + MySQL Database Second Training
uniapp 在HBuilder X中配置微信小程序开发工具
RIP综合实验
OSPF综合实验
梅科尔工作室-PR第三次培训笔记(效果与转场及插件使用)